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In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE)

algorithm on a variant of Satisfiability problem for an ensemble of random graphs

parametrized by the ratio of clauses to variables,γ = M/N . We introduce a set of macro-

scopic parameters (landscapes) and put forward an ansatz of universality for random bit

flips. We then formulate the problem of finding the smallest eigenvalue and the excitation

gap as a statistical mechanics problem. We use the so-called annealing approximation with

a refinement that a finite set of macroscopic variables (versesonly energy) is used, and are

able to show the existence of a dynamic thresholdγ = γd, beyond which QAE should take

an exponentially long time to find a solution. We compare the results for extended and

simplified sets of landscapes and provide numerical evidence in support of our universality

ansatz.

PACS numbers: 03.67.Lx,89.70.+c

I. INTRODUCTION

An important open question in the field of quantum computing is whether it is possible to

develop quantum algorithms capable of efficiently solving combinatorial optimization problems

(COP). In the simplest case the task in a COP is to minimize the energy functionEσ with the

domain given by the set of all possible assignments ofN binary variables,σ = {σ1, . . . , σN},
σj = ±1. In quantum computation this cost function corresponds to a HamiltonianHP

HP =
∑

σ

Eσ|σ〉〈σ| (1)

|σ〉 = |σ1〉1 ⊗ |σ2〉2 ⊗ · · · ⊗ |σN〉N ,
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where the summation is over the2N states|σ〉 forming the computational basis of a quantum

computer withN qubits. State|σj〉j of thej-th qubit is an eigenstate of the Pauli matrixσ̂z with

eigenvalueσj. It is clear from the above that the ground state ofHP encodes the solution to the

COP with cost functionEσ. In what follows we shall use two equivalent notations for binary

variables: Ising spinsσj = ±1 as well as bitszj = (1− σj)/2 = 0, 1.

Recently Farhi and coworkers proposed a new family of quantum algorithms for combinato-

rial optimization that is based on the properties of quantum adiabatic evolution [1, 2]. Numerical

simulations were performed for the study of its performance for satisfiability problems [8]. Im-

plementation of these algorithms on a quantum computing device is feasible for COPs where the

energy functionEσ possesses a locality property, in a sense that it is given by the sum of terms

each involving only a relatively small number of bits, that does not scale withN [1, 3, 4]. An ex-

ample of a problem that can have this property is Satisfiability that deals withN binary variables,

submitted toM constraints, assuming that each constraint involvesO(1) bits. The task is to find a

bit assignment that satisfies all the constraints.

Satisfiability is a basic problem in the so-called NP-complete class [5]. This class contains

hundreds of the most common computationally hard problems encountered in practice, such as

constraint satisfaction and graph coloring. NP-complete problems are characterized in the worst

case by exponential scaling of the run time or memory requirement with the problem sizeN . A

special property of the class is that any NP-complete problem can be converted into any other

NP-complete problem in polynomial time on a classical computer. Therefore, it is sufficient to

find a deterministic algorithm that can be guaranteed to solve all instances of just one of the NP-

complete problems within a polynomial time bound. It is widely believed, however, that such an

algorithm does not exist on a classical computer. Whether it exists on a quantum computer is one

of the central open questions.

Running of the quantum adiabatic evolution algorithms (QAA) for several NP-complete prob-

lems has been simulated on a classical computer using a large number of randomly generated

problem instances that are believed to be computationally hard for classical algorithms [2, 6, 8].

Results of these numerical simulations for relatively small size of the problem instances (N .
25) suggest aquadraticscaling law of the run time of the QAA withN .

A particularly simple version of Satisfiability is the NP-complete Exact Cover problem that

was used in [2] to study the performance of QAA. In this problem each constraint is a clause that

involves a subset ofK = 3 binary variables. A given constraint is satisfied if exactly one of its bits
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equals 1 and the rest of the bits equal 0. In the optimization version of this problem one minimizes

the energy functionEσ that is equal to the number of constraints violated by a given bit-assignment

σ. A generalization of this problem to an arbitrary numberK can be called positive 1-in-K SAT

[9].

In practice algorithms for NP-complete problems are characterized by a wide range of running

times, from linear to exponential, depending on the choice of certain control parameters of the

problem (e.g., in Satisfiability it is the ratio of the number of constraints to the number of vari-

ables,M/N ). Therefore, a practically important alternative to the worst case complexity analysis

is study of a typical-case behavior of optimization algorithms on ensembles of randomly generated

problem instances chosen from a given probability distribution. For example, in the case of pos-

itive 1-in-K SAT one can define a uniform ensemble of random problem instances. An instance

I consists ofM statistically independent clauses, each corresponding to aK-tuple of distinct

bit-indices uniformally sampled from the interval(1, N) with probability1/
(

N
K

)
.

In the case of an exponential scaling low for the algorithm’s running timesta it is convenient to

analyze the distribution of a normalized logarithmic quantitylog ta/N . This distribution becomes

increasingly narrow in the limit of largeN where the mean value〈log ta〉/N well characterizes the

typical case exponential complexity of an algorithm. For Satisfiability problem the dependence of

the asymptotic quantity

η = lim
N→∞

〈log ta〉/N (2)

on the clause-to-variable ratioγ = M/N has the qualitative form shown in Fig.1. At some critical

value γ = γd algorithmic complexity undergoes the dynamical transition from polynomial to

exponential scaling law. This transition has been studied recently for the case of a variant of

the classical random-walk algorithm for the Satisfiability problem [10]. Functionη(γ) is non-

monotonic inγ and reaches its maximum at a certain pointγc > γd. It was discovered some time

ago [11, 13, 14] thatγc is a critical value for the so called satisfiability phase transition: ifγ < γc,

a randomly drawn instance is satisfiable with high probability, i.e., there exists at least one bit

assignmentσ that satisfies all the constraints (Eσ = 0). For γ > γc instances are almost never

satisfiable. In the asymptotic limitN →∞ the proportion of satisfiable instances drops from 1 to

0 infinitely steeply atγ = γc as shown in Fig. 1.

The value ofγd (unlikeγc) depends on both the problem at hand and the optimization algorithm.

Comparison of the dynamical thresholdsγd for different algorithms provides an important relative

measure of their typical-case performance in a given problem. In this paper we will provide the
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FIG. 1: Solid line shows the qualitative plot of the normalized quantityη/ηmax vsM/N (ηmax is a maxi-

mum value ofη). Dashed line shows the proportion of satisfiable instancesvsM/N .

analysis of the dynamical threshold for the quantum adiabatic evolution algorithm and also for

simulated annealing for several versions of the random satisfiability problem.

II. QUANTUM ADIABATIC EVOLUTION ALGORITHM

Consider the time-dependent HamiltonianH(t) ≡ H(t/T )

H(τ) = (1− τ)HB + τ HP , (3)

whereτ = t/T ∈ (0, 1) is dimensionless “time”,HP is the “problem” Hamiltonian (1) andHB

is a “driver” Hamiltonian, that is designed to cause transitions between the eigenstates ofHP .

Using dimensionless time and setting~ = 1 the quantum state evolution obeys the equation,

i T∂|Ψ(τ)〉/∂τ = H(τ)|Ψ(τ)〉. At the initial moment the quantum state|Ψ(0)〉 is prepared to be

the ground state ofH(0) = HB. In the simplest case

HB = −
N∑

j=1

σj
x, |Ψ(0)〉 = 2−N/2

∑
σ

|σ〉, (4)

whereσj
x is a Pauli matrix forj-th qubit. Consider the instantaneous eigenstates ofH(τ) with

eigenvaluesλk(τ) arranged in nondecreasing order at any value ofτ ∈ (0, 1)

H(τ) |φk(τ)〉 = λk(τ) |φk(τ)〉, (5)

herek = 0, 1, 2, . . . , 2N − 1. Provided the value ofT (the runtime of the algorithm) is large

enough and there is a finite gap for allτ ∈ (0, 1) between the ground and excited state energies,
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λ1(τ) − λ0(τ) > 0, the quantum evolution is adiabatic and the state of the system|Ψ(τ)〉 stays

close to an instantaneous ground state,|φ0(τ)〉 (up to a phase factor). The state|φ0(1)〉 coincides

with the ground state of the problem HamiltonianHP and, therefore, a measurement performed

on the quantum computer at the final momentt = T (τ = 1) will yield one of the solutions of

COP with large probability.

The standard criterion for adiabatic evolution is usually formulated in terms of minimum exci-

tation gap between the ground and first exited states [12]

T À E
∆λ2

min

, ∆λmin = max
0≤τ≤1

[λ1(τ)− λ0(τ)] . (6)

Here the quantityE is less than the largest eigenvalue of the operatorHP − HB [18] and scales

polynomially withN in the problems we consider.

III. QUASICLASSICAL APPROXIMATION AND COMBINATORIAL LANDSCAPES

In the computational basis (1) we have

H = τ
∑

σ

Eσ|σ〉〈σ| − (1− τ)
∑

σ,σ′
δ [d(σ,σ′), 1] |σ〉〈σ′|, (7)

hereδ[m,n] denotes the Kronecker delta-symbol and the summation is over the pairs of spin

configurationsσ andσ′ that differ by the orientation of a single spin,d(σ,σ′)=1, where

d(σ,σ′) =
1

2

N∑
j=1

|σj − σ′j|, (8)

denotes a so-called Hamming distance between the spin configurationsσ andσ′, that is the num-

ber of spins with opposite orientations. Eq. (5) in the computational basis takes form

λ(τ)φσ(τ) = τEσφσ(τ)− (1− τ)
∑

σ′
δ [d(σ,σ′), 1] φσ′(τ) (9)

(here we drop the subscript indicating the number of a quantum state inλ andφσ). In what follows

we assume that typical energiesEσ = O(N), but the change in the energy after a single spin flip is

O(1). This assumption about the energy landscape holds for instances of the Satisfiability problem

with the clause-to-variable ratioM/N = O(1), the case of most interest for us (see the discussion

in Sec. I).

We now consider a set of functions{Xl = Cl(σ, I), l = 1, . . . ,K}, referred to as (com-

binatorial) landscapes, that depend on a problem instanceI and project a spin configurationσ
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onto a vector{Xl} with integer-valued components. Prior to considering a specific COP here we

make certain assumptions about the properties of landscapes and apply them to the analysis of the

minimum gap in the QAA.

In particular, we assume that, similar to energy, landscapes{Xl = Cl(σ, I)} are macroscopic

functions, so that the typical values ofXl areO(N), and possess a certainuniversalityproperty

in the asymptotic limitN → ∞. Specifically, the joint distribution of{Cl(σ, I)} over the spin

configurationsσ forming the 1-spin-flip neighborhood of an “ancestor” configurationσ′ depends

on a problem instanceI and spin configurationσ′ onlyvia the set of parameters{X ′
l = Cl(σ

′, I)}.
We then define a quantity

P ({Xl} | {X ′
l}) =

1

N

∑

d(σ,σ′)=1

K∏

k=1

δ [Xl, Cl(σ, I)] , (10)

X ′
l = Cl(σ

′, I),

In effect, the above universality property of landscapes implies that the set of all possible

spin configurationsσ is divided into “boxes” with coordinates{Xl} whereXl = Cl(σ), and

P ({Xl} | {X ′
l}) (10) represents the transition probability from box{Xl} to box{X ′

l}. In particu-

lar, it obeys Bayes’ rule

P ({Xl} | {X ′
l}) Ω({X ′

l}) = P ({X ′
l} | {Xl}) Ω({Xl}), (11)

whereΩ({Xl}) is the number of different spin configurations in the box{Xl}.
We consider energy to be a smooth function of landscapes

Eσ = E ({Xl}) , Xl ≡ Cl(σ, I), (12)

so that|∂E/∂Xl| = O(1). Furthermore, we assume that, on one hand, the change inCl(σ, I)

after flipping one spin isO(1), for typical problem instances. On the other hand, we assume

that correlation properties in a neighborhood of a box{Xl} described byP ({Xl} | {X ′
l}) vary

smoothly with box coordinates on a scale1 . |δXl| ¿ N . Therefore if we write the transition

probability in the form

P ({X ′
l} | {Xl}) = p ({X ′

l −Xl}; {xl}) , {xl ≡ Xl/N}, (13)

thenp ({kl}; {xl}) is a steep function of its first argument: it decays rapidly in the range1 .
|kl| ¿ N for eachl-component. However this is a smooth function of its second argument: it

varies slightly when coordinatesxl change on a scale|δxl| ¿ 1.
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One can show that under the above assumptions the quantum amplitudesφσ corresponding to

the smallest eigenvalue depend on the spin configurationσ only via the coordinates of thes box

{Xl} to which it belongs. Then we look for the solution of (9) in the following form:

φσ(τ) =
ϕ({Xl}, τ)√

Ω({Xl})
, {Xl ≡ Cl(σ, I)}. (14)

where|ϕ({Xl}, τ)|2 gives the probability of finding the system in the box{Xl}. Plugging (14)

into (9) and making use of (11),(12) we obtain:

λ(τ)ϕ(X, τ) = τE(X)ϕ(X, τ)− (1− τ)N
∑

X′
L(X,X′}) ϕ(X′, τ), (15)

X ≡ {X1, X2, . . . , XK}, (16)

(hereafter we use the above shorthand notation for the set of landscapes). In (15) we introduced

L

L(X,X′) = L(X′,X) = P (X′|X)

√
P (X)

P (X′)
, (17)

P (X) = 2−NΩ(X),

whereP (X) is a probability that a randomly sampled configurationσ belongs to a boxX. We

shall look for a solution of (15) in the WKB-like form

ϕ(X, τ) = exp (−W (X, τ)) , (18)

so that

λ(τ) = τE(X)− (1− τ)N
∑

X′
L(X,X′)eW (X, τ)−W (X′, τ). (19)

We now introduce scaled variables (cf. (13))

x =
X

N
, Γ =

1− τ

τ
, g =

λ

τN
, (20)

and also

w(x, Γ) ≡ 1

N
W (X, τ), ε(x) ≡ 1

N
E(X), s(x) ≡ 1

N
log Ω(X), (21)

wheres(x) is an entropy function. Based on (17) and the properties of the transition probability

(see Eq. (13) and discussion after it) we assume that the sum overX′ in (19) is dominated by terms

with |X′ − X| = O(1). Then we can use an approximation

W (X′, τ)−W (X, τ) ≈ ∇w · (X′ −X) +O(1/N), (22)
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where∇w ≡ ∂w(x, Γ)/∂x. Plugging (22) into (19) and making use of Eqs. (13),(17),(20) and

(21) we obtain after some transformations:

g = h(x,∇w; Γ), (23)

h(x,p; Γ) = ε(x)− Γ
∑

k

p(k;x)e−k·(∇s/2+p).

(here∇s ≡ ∂s(x)/∂x). This is a Hamilton-Jacobi equation for an auxiliary mechanical system

with coordinatesx, momentap = ∇w, actionw, Hamiltonian functionh(x,p; Γ) and energyg.

Using the symmetry relation

p(k;x)e−k·∇s/2 = p(−k;x)ek·∇s/2, (24)

that follows directly from Eqs. (11) and (17) we obtain that the minimum ofw(x, Γ) overx where

∇w = 0 necessary corresponds to the minimum of the functional:

f(x, Γ) = ε(x)− Γ`(x), (25)

wheref(x, Γ) ≡ h(x,0, Γ) and

`(x) = p̃ (∇s/2;x) , p̃ (y;x) ≡
∑

k

p (k;x) e−k·y. (26)

The summation in (23) and (26) is over componentskl of k in the rangekl ∈ (−∞,∞). In what

follows, we shall refer tõp(y;x) in (26) as a “Laplace transform” ofp(k;x).

We note that̀ (x) =
∑

X′ L(X′,X) and one can use Bayes rule and inequality of Cauchy-

Bunyakovsky in (17) to show that that the positive-valued function`(x) is bounded from above,

0 < `(x) ≤ 1. This shows that the analysis of the effective potential based on the WKB approxi-

mation (22) is self-consistent in the asymptotic limitN →∞.

It follows from the above analysis that the ground-state wavefunctionψ(x, Γ) ≡ ϕ(X, τ)

is concentrated inx-space near the bottom of the “effective potential” given by the functional

f(x, Γ), i.e. near the pointx∗(Γ) wheref(x, Γ) reaches its minimum. In this regionS ≈ 1
2
xT Â x,

where matrixÂ is positive definate, and according to (18), the wavefunction has a Gaussian form

with the width∝ 1/
√

N .

The ground-state energyg ≡ g(Γ) is given by the value of the effective potentialf (25) at its

minimum

g(Γ) = f(x∗(Γ), Γ), (27)

∂f(x, Γ)/∂x|
x=x∗(Γ)

= 0, f(x, Γ) ≥ g(Γ).
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We note that asΓ → 0 the shape of the effective potentialf(x, Γ) approaches that of the energy

functionε(x) and therefore its minimumx∗(Γ) → x0 wherex0 is a minimum ofε(x). It can be

shown that in this limit the ground-state eigenvalue approaches the minimum energy valueε(x0)

and the eigenvalues ofA−1 approach zero (and so does the characteristic width of the wavepackage

ψ(x, Γ)). The spin configurations that belong to a boxx0 in x-space correspond to the solutions of

the optimization problem at hand. It is clear that one of the solutions can be recovered with high

probability after a measurement is performed at the end of the “quantum annealing” procedure.

Variational Ansatz: For cases in which the set of macroscopic variables{Xl} is not suf-

ficient (in statistical sense (13)) to describe the dynamics of the quantum algorithm, one can

still implement the above procedure as anapproximation, using a variational method. Intro-

ducing a Lagrangian multiplierλ, one looks for the minimum of the functionalF (ϕ, λ) =

〈φ|H|φ〉 − λ(〈φ|φ〉 − 1), using a variational ansatz (14) for the wavefunction. The solution of

the variational problem is provided by Eqs. (18)-(27). The smallest eigenvalueg (27) corresponds

to the value of the Lagrange multiplier at the extremum,λ = τNg, and the maximum of the

variational wavefunction corresponds to the minimum of the effective potentialf (25).

A. Global bifurcations of the effective potential

However, in the case of a global bifurcation where the effective potentialf(x, Γ) possesses

degenerate or nearly degenerate global minima, the answer is modified. If for some value of

Γ = Γ∗, a global bifurcation occurs, in our example this would mean that for this value ofΓ, two

values ofx, x+
∗ andx−∗ give a global minimum tof(x, Γ). In such a case, the smallest eigenvalue

is not doubly degenerate; rather an exponentially small gap∆λmin between the ground and first

excited state is developed, itself being proportional to the overlap between two wave-functions,

peaked aroundx+
∗ andx−∗ respectively.

To estimate the overlap we note that atΓ∗ the two global minima of the effective potential

f(x, Γ∗) correspond to the two coexisting fixed points of the Hamiltonian function in (23) with

zero momentum and the same values of energyg,

∂f/∂x = ∂h/∂x = ∂h/∂p = 0 (28)

x = x±∗ , p = p±∗ = 0, g(x,p; Γ∗) = g+
∗ = g−∗ . (29)
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Then to logarithmic accuracy we have

1

N
log ∆gmin =

∫ ∞

−∞
dt′ [ ẋ(t′)p(t′)− h(x(t′),p(t′)) ] +O(1/N), (30)

where(x(t),p(t) ) is a heteroclinic trajectory connecting the two fixed points of (23)

ẋ(t) = ∂h/∂p, ṗ(t) = −∂h/∂x, (31)

x(t → ±∞) = x±∗ , p(t → ±∞) = 0.

From the algorithmic perspective this means that whenΓ gets close toΓ∗, it has to change

exponentially slowly (cf. Sec. II and Eq. (6)). This could be called a critical slowing down in

the vicinity of a quantum phase transition. If simulated annealing (SA) is used and a similar

phenomenon occurs, the value of the temperatureT∗ is the point where a global bifurcation occurs

in the free energy functional

f(x, T ) = ε(x)− Ts(x). (32)

By comparing the free energy functional (32) with the functional (25) corresponding to “quantum

annealing” (QA), we note that in QA the quantitiesΓ and`(x) play the roles of temperature and

entropy in (SA), respectively.

We note in passing that a similar picture for the onset of global bifurcation that can lead to

the failure of QA and (or) SA was proposed in [18, 19] for the case where the energyEσ is a

non-monotonic function of a single landscape parameter, a total spin
∑N

j=1 σj. In this case the

dynamics of QA can be described in terms of one-dimensional effective potential [20, 23].

IV. THE MODELS

An instance of a Satisfiability problem withN binary variables committed toM = γN con-

straints (where each constraint is a clause involvingK variables) can be defined by the specifi-

cation of the following two objects. One of them is anM × N matrix Ĝ, the rows of the matrix

are independentK-tuples of distinct bit indexes sampled from the interval(1, N). Them-th row

of Ĝ defines the subset of theK binary variables involved in them-th clause. The second object

is a set of boolean functionsB = {bm}, with each function encoding a corresponding constraint.

A function bm = bm[σGm1
, σGm2

, . . . , σGmK
] is defined over the set of2K possible assignments

of the string ofK binary variables involved in them-th clause. The function returns value 1 for
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assignments of binary variables that satisfy the constraint and 0 for bit assignments that violate it.

Then the energy function equals to the number of violated constraints

Eσ ≡ Eσ(I) = M −
M∑

m=0

bm[σGm1
, σGm2

, . . . , σGmK
], (33)

hereI = (G,B) denotes an instance of a problem.

The matrixĜ defines a hypergraphG that is made up of the set ofN vertices (corresponding

to the variables in the problem) and a set ofM hyperedges (corresponding to the constraints of

the problem), each one connectingK vertices. An ensemble ofdisorder configurationsof the

hypergraph corresponds to all the possible ways one can placeM = γN hyperedges amongN

vertices where each hyperedges carriesK vertices. Under the uniformity ansatz all configurations

of disorder are sampled with equal probabilities (i.e., rows of the matrixĜ are independently and

uniformly sampled in the (1,N ) interval).

Boolean functionsbm may also be generated at random for each constraint with an example

being random K-SAT problem [16, 17]. However here we consider slightly different versions of

the random Satisfiability problem that are still defined on a random hypergraphG but have a non-

random boolean functionbm = b, identical for all the clauses in a problem. One of the problems

is Positive 1-in-K Sat in which a constrain is satisfied if and only if exactly one bit is equal 1 and

the otherK-1 bits are equal 0. The boolean functionb for this problem takes the form

b[α1, α2, . . . , αK ] = δ

[
K∑

p=1

1− αp

2
, 1

]
(Positive 1-in-K Sat). (34)

αp = ±1, p = 1, 2, . . . , K.

We shall also consider another problem, Positive K-NAE-Sat, in which a clause is satisfied unless

all variables that appear in a clause are equal (”K-Not-All-Equal-Sat”). The boolean functionb

for this problem takes the form

b[α1, α2, . . . , αK ] = 1−
∑
s=±1

δ

[
K∑

p=1

1 + s αp

2
, 0

]
(Positive K-NAE-Sat). (35)

Both problems are NP-complete (Appendix A). It will be shown below that they are characterized

by the same set of landscape functions.
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V. LANDSCAPES: ANNEALING APPROXIMATION

For a particular spin (σ) and disorder (G)) configurations, all clauses can be divided into2K

distinct groups according to the values of the binary variables that appear in a clause. We will label

the different types of clauses by vectorial indexα = {α1, . . . , αK}, αp = ±1. We now divide

the set of2N spin configurations into boxes identified by certain numbers of clauses of each type,

N Mα, and also by the Ising spin in a configurationNq

Mα ≡ Mα(σ,G) =
1

N

M∑
m=1

K∏
p=1

δ
[
σGmp

, αp

]
, (36)

q ≡ q(σ) =
1

N

N∑
j=1

σj. (37)

Different boxes correspond to macroscopic states defined by the set of parameters (q, {Mα}) with

q ∈ (−1, 1) and
∑

α Mα = γ. The energy function can be expressed via (36) as follows (cf.

(33)-(35)):

ε ({Mα}) = γ −
K∑

m=0

ζmMm, Mm ≡
∑

α

Mα δ

[
K − 2m,

K∑
p=1

αp

]
, (38)

where the form of the coefficientsζm depends on the problem:

ζm =


 δ[m, 1] (Positive 1-in-K Sat)

1− δ[m, 0]− δ[m,K] (Positive K-NAE-Sat)
(39)

In the following we compute an approximation to the effective potential (25), using the land-

scape functions (36), (37). According to (26) it depends on the entropy functions(q, {Mα}) and

the transition probability (13) between different macroscopic states. Recalling that variablesq and

Mα are normalized by the factorN we study the probability of transition,p(n, {rα}; q, {Mα}),
from the state(q, {Mα}) to the state(q + n/N, {Mα + rα/N}). The Laplace transform ofp with

respect ton, {rα} has the form (cf. (26))

p̃ (θ, {yα}; q, {Mα}) =
∑

n, {rα}
e−θn−∑

α yαrαp(n, {rα}; q, {Mα}), (40)

We assume that all binary variables are also subdivided into distinct groups based on their value

σ = ±1 and a vectork with integer coefficientskp
α indicating the number of times a variable

appears in a clause of typeα in positionp. Clearly, consistency requires thatkp
α = 0 unless
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αp = σ. We now define a quantitycσ,k which is equal to the fraction of spins with givenσ,k. For a

spin configurationσ there exists a set of coefficients{cσ,k} with elements of the set corresponding

to all possible values ofσ andk (there will be many0’s in a set for each spin configuration). In

general, there are exponentially many sets{cσ,k} that correspond to a macroscopic state (q, {Mα})
∑

σ,k

σ cσ,k = q,
∑

σ,k

kp
α cσ,k = Mα (p = 0, 1, . . . , K). (41)

Coefficients{cσ,k} are concentrations of spin variables with different types of “neighborhoods”.

We shall assume that in the limit of largeN the distribution of coefficientscσ,k corresponding to

the same macroscopic state (41) is sharply peaked around their mean values (with the width of the

distribution∝ N−1/2).

Under the above assumption we can immediately compute the Laplace-transformed transition

probability (40) in terms of the coefficientscσ,k. Indeed, consider flipping a spin with valueσ

and neighborhood type given by vectork. This will change the total spin by−2σ and for each

clause of typeα and indexp ∈ (1, K) the value ofNMα will decrease bykp
α. On the other

hand, for the clause typeα′ ≡ ᾱ(p, α) obtained by flipping a bit inp-th position inα, NMα′ is

correspondingly increased bykp
α. Hence the Laplace-transformed transition probability is

p̃ (θ, {yα}; q, {Mα}) =
∑

σ,k

cσ,k exp

[
2θσ +

∑
p,α

(
yα − yᾱ(p,α)

)
kp

α

]
. (42)

where the coefficientscσ,k are set to their mean values in a macroscopic state (41)).

A. Entropy and coefficientscσ,k in a macroscopic state defined byq and {Mα}

Here we use the annealing approximation to estimate the mean values ofcσ,k and also of a

macroscopic state(q,Mα). We start by introducing the concept of annealed entropy. LetN be

the number of spin configurations subject to some constraints. In general, it is a function of the

disorder realization. The annealed entropy is defined as the logarithm of its disorder average:

sann = ln〈N〉. Note that for the correct, quenched, entropy the order of taking a logarithm and

disorder average is reversed.

Since in the random hypergraph model all disorder configurations are equally probable, an-

nealed entropy is given assann = lnNS,G − lnNG, whereNS,G is the total number of spin and

disorder configurations andNG is the number of disorder configurations.
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For enumerating all possible disorder configurations we depart slightly from the traditional

random hypergraph model. In our model all clauses are ordered (two disorder configurations where

any two clauses are permuted are deemed different), clauses can be repeated (the same clause can

appear twice), the order of variables in a clause is important (two disorder configurations are

different if the order of variables in any clause is changed), and finally, variables can be repeated

in a single clause. This change does not alter the underlying physics, since the probability that

two identical clauses appear is infinitesimal, and a variable enters a clause twice in at mostO(1)

clauses, which can be safely neglected. As regards the distinction between the disorders with

permuted clauses, this only introduces a combinatorial factor which cancels out. The advantage is

that each disorder can be represented as a sequence ofM K-tuples of integers from1 to N .

We will first compute the annealed entropy of a macroscopic state(q, {Mα}) under addi-

tional constraints: we fix the valuescσ,k and compute the annealed entropy as a function of

q, {Mα}, {cσ,k}. Recalling thatMα are the numbers of clauses of a given type scaled byN ,

and the total number of clauses isγN , we obtain the number of joint spin-disorder configurations

as a product of the following factors:

(i) the number of ways to assign types to clauses(Nγ)!/
∏

α(NMα)!,

(ii) the number of ways to assign types to variablesN !/
∏

σ,k(Ncσ,k)!,

(iii) for all p, α, the number of ways to permute the appearance of variables inp-th position of

clauses of typeα: (NMα)!/
∏

σ,k(k
p
α!)Ncσ,k,

Consequently, the annealed entropy is given by

sann[{cσ,k}; q, {Mα}] = −
∑

σ,k

cσ,k ln

[
cσ,k

∏
p,α

(kp
α!)

]
+ (K − 1)

∑
α

Mα ln Mα + γ ln γ − γK.

(43)

In the largeN limit we replacecσ,k by their annealed averages, i.e., the values that maximize the

annealed entropy. In its simplest form, we place no constraints oncσ,k except consistency require-

ments (41). Associating Lagrange multipliersλ andln µp
α with these constraints, the expression

for the entropy can be rewritten as

sann[q, {Mα}] = min
λ, µp

α

{
−λq +

∑
p, α

Mα ln
Mα

µp
α

+ ln Z[λ, {µp
α}]

}

−
∑

α

Mα ln Mα + γ ln γ − γK. (44)
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The values ofcσ,k are given by

cσ,k =
1

Z
eλσ

∏
p, α

(µp
α)kp

α/kp
α!, (45)

andZ is given by

Z = exp

(
λ +

∑
α

∑
p

δ[αp, 1]µp
α

)
+ exp

(
−λ +

∑
α

∑
p

δ[αp,−1]µp
α

)
. (46)

The values of the Lagrange multipliersλ, µp
α are related toq, {Mα} via

∂ ln Z

∂λ
= q, (47)

µp
α

∂ ln Z

∂µp
α

= Mα. (48)

From here we obtain the expression for the Lagrange multiplierµp
α

Mα

µp
α

=
1 + αp q

2
. (49)

Then introducing a new notation

µ± =
∑
p, α

1± αp

2
µp

α,

M± =
∑
p, α

1± αp

2
Mα, (50)

we obtain

Z = eλeµ+ + e−λeµ− , µ± =
2M±
1± q

. (51)

Then the entropy can be rewritten in the following form

sann[q, {Mα}] = −λq+M+ ln
1 + q

2
+M− ln

1− q

2
+ln Z−

∑
α

Mα ln Mα +γ ln γ−γK. (52)

We now use the following equations

eλeµ+ = Z
1 + q

2
, e−λeµ− = Z

1− q

2
(53)

and obtain the expression for the second Lagrange multiplierλ

−λq = −1 + q

2
ln

1 + q

2
− 1− q

2
ln

1− q

2
− ln Z + γK. (54)

Upon substitution ofλ from the above into the expression forsann (52) we finally obtain the

annealed entropy

sann[q, {Mα}] = − q tanh−1 q − ln

√
1− q2

2
+ M+ ln

1 + q

2
+ M− ln

1− q

2

−
∑

α

Mα ln Mα + γ ln γ. (55)

Also the coefficientscσ,k are given by (45),(46) with Lagrange multipliers given in (49) and (54).
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B. Effective potential

Consider a factor̀(x) = (∂f/∂Γ)ε (25), (26) in the expression (25) for effective potential with

x ≡ (q, {Mα}). It follows from (26) that to find this factor we need to evaluate the Laplace-

transformed probability (40,42)) at

θ =
1

2
∂sann/∂q, yα =

1

2
∂sann/∂Mα. (56)

This is where the Lagrange multipliers come in handy as we can immediately claim that

∂sann/∂q = −λ (57)

∂sann/∂Mα =
∑

p

ln
Mα

µp
α
− ln Mα. (58)

Note that in differentiating with respect toMα above we omitted the constant term. This is permis-

sible since only differences∂qann/∂Mα− ∂qann/∂Mα′ appear in Eq. (42). A further refinement is

to write ∑
p

ln
Mα

µp
α

=
∑

p

ln
1 + σp q

2
= K ln

√
1− q2

2
+

∑
p

σp tanh−1 q.

Using this in the Eqs. (26),(42), we obtain

`(q, {Mα}) =
1

Z

∑

σ,k

∏
p,α

(
µp

αe
1
2

∑
p′ (σp′−σ′

p′ ) tanh−1 q

√
Mα′

Mα

)kp
α

/kp
α!. (59)

Since1
2

∑
p′(σp′ − σ′p′) ≡ σp (whereα′ is obtained fromα by flippingp-th bit) and also

Mα/µp
α =

√
1− q2

2
eσp tanh−1 q,

the expression is considerably simplified

`(q, {Mα}) =
2

Z
exp

(
2√

1− q2

∑

<α,α′>

√
MαMα′

)
, (60)

where the sum is over pairs〈α, α′〉 that differ in exactly one position

1

2

K∑
p=1

|αj − α′j| = 1. (61)

To evaluateZ we write

Z =
2√

1− q2

√
eµ+eµ− =

2√
1− q2

exp

(
M+

1 + q
+

M−
1− q

)
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and the expression for` becomes

`(q, {Mα}) =
√

1− q2 exp

(
2
∑

<α,α′>

√
MαMα′√

1− q2
− M+

1 + q
− M−

1− q

)
. (62)

hereM± are given in (50).

We note that the effective potentialf(q, {Mα}) = ε({Mα})− Γ`(q, {Mα}) is symmetric with

respect to permutation of individual components in{Mα} corresponding to different orders of

-1’s and +1’s in the vectorial indexα. We look for the minimum off(q, {Mα}) using symmetric

ansatz

Mα =

(
K

m

)−1

Mm, m =
K∑

p=1

1− αp

2
. (63)

wherem is the number of -1’s inα. Substituting (63) into (62) and rewriteing

¯̀(q, {Mm}) =
√

1− q2 exp

(
2
∑K−1

m=0

√
(m + 1)(K −m)MmMm+1√

1− q2

− Kγ + q
∑K

m=0(K − 2m)Mm

1− q2

)
. (64)

where we defined̀̄(q, {Mm}) ≡ `(q, {Mα}). The effective potential is then

f̄(q, {Mm}) = ε ({Mm})− Γ¯̀(q, {Mm}) (QA), (65)

with energy given in (38). In the case of the SA algorithm the corresponding free-energy functional

(32) is

f̄(q, {Mm}) = ε({Mm})− T s̄(q, {Mm}) (SA), (66)

where the entropy function equals

s̄(q, {Mm}) = − q tanh−1 q + (γK − 1) ln

√
1− q2

2

−
(

K∑
m=0

(K − 2m)Mm

)
tanh−1 q −

K∑
m=0

Mm ln
Mm(

K
m

) . (67)

If we were to use an even smaller set of macroscopic parameters (e.g. only the energyε)

we can still employ formula (64) with the proviso that unspecified variables should be taken to

equal their most likely values, i.e. those that maximize the entropys̄(q, {Mm}) not the landscape

¯̀(q, {Mm}). For example, in the case of energy-only landscapes,¯̀ = ¯̀(ε), the valuesq, {Mm}
that maximizēs(q, {Mm}) for a given energyε and number of hyperedgesγN (

∑K
m=0Mm = γ)

should be computed and then substituted into the expression for¯̀ (64).



18

1-in-K K-NAE

K γd γc γd γc

3 – 0.805 – 2.41

4 0.676 0.676 – 5.19

5 0.557 0.609 – 10.7

6 0.475 0.548 19.8 21.8

7 0.416 0.500 34.9 44.0

8 0.371 0.461 61.7 88.4

9 0.335 0.428 109 177

10 0.305 0.400 196 355

TABLE I: Annealing bounds for dynamic (γd) and static (γc) transition for positive 1-in-K SAT and positive

K-NAE SAT for different values of the number of variables in a clauseK.

We compute, within the annealing approximation, the point of static transitionγc (cf. Fig.1),

where the entropy of the macroscopic state with zero energy vanishes,s(0) = 0, and the dynamic

transitionγd; for connectivitiesγ > γd an effective potential (65) exhibits a global bifurcation for

someΓ = Γ∗. The resulting values are given in Table I ( see also Figs. 2 and 3).
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FIG. 2: Static γc (circles) and dynamicγd

(crosses) transition for positive 1-in-K SATvs

K.

3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

K

γ

FIG. 3: Static γc (circles) and dynamicγd

(pluses) transition for positive K-NAE SATvs

K.

In Fig. 4 we plot time variations of the landscape parameters,Mm = M∗m, corresponding

to the global minimum of the effective potential. In Fig. 5 we plot a time-variation of the scaled

ground-state energyg given by the value of the effective potential at its minimum. Singular be-
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havior corresponding to the first-order quantum phase transition at certainτ = τ∗ (Γ = Γ∗) can

be clearly seen from the figures. Plots in Figs. 4 and 5 correspond to precisely the static transition

γ = γc for the case ofK = 4 in 1-in-K SAT problem. In the regionγd < γ < γc there are

0.65 0.7 0.75 0.8
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τ

M
m

 / 
γ

FIG. 4: Plots of the landscape parametersMm = M∗m at the global minimum of the effective potential,

vsτ for K = 4 (1-in-K SAT problem). Curves labelled 0-4 correspond toM∗0/γ throughM∗4/γ.
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−0.25
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−0.05

0

g

τ

FIG. 5: Scaled energy of adiabatic ground stateg vsτ

for K=4 (1-in-K SAT problem).

exponential (inN ) number of solutions to Satisfiability problem but the runtime of the quantum

adiabatic algorithm to find any of them also scales exponentially withN . This is ahard region for

this algorithm. We note, that in the limit ofK →∞ the annealing approximation becomes exact.

Together with the fact that for largeK γd andγc seem to be distinctly different provides evidence

that this result (existence of hard region for quantum adiabatic algorithm) is robust.
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FIG. 6: Results of numerical simulations and their comparison with theory. Depicted are Laplace transforms

of M1 for 1-in-3 SAT. Numerical results: curves that have different colors correspond to different random

problem instances; curves of same color correspond to different random bit strings. The dashed black line is

a theoretical result based on the annealing approximation. The insets (a)-(e) depict instances with103, 104,

105, 106, and107 binary variables. Since the error is not recognizable we replot in (f) a magnified section

of inset (e). The bit strings were sampled withq = 0.422, M0 = 0.048, M1 = 0.416, M2 = 0.123,

M3 = 0.013, corresponding toM/N = 0.6. These values correspond to the energyE∞/2 and they are

shifted by 10% from the most likely values ofq, {Mm} for this energy (this shift isÀ N1/2). We also note

that for 1-in-3 SAT numerical simulations give static phase transition atγc ≈ 0.62).
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VI. UNIVERSALITY PROPERTY FOR TRANSITION PROBABILITIES

Here we study the universal features of the transition probability in (10) for the set of macro-

scopic variables corresponding to the (normalized) total Ising spinq and numbers of clauses of

different types{Mm} (38) (the type of a clause is equal to the number of unit bits involved in the

clause). For simplicity, we shall focus in this section on the caseK = 3 only.

To clarify the above choice of macroscopic variables we consider an auxiliary quantity: a

conditional probability distribution of the macroscopic variables(q, {Mm}) over the set of all

possible configurationsσ obtained by flippingr bits of the configurationσ′. The first moments of

this distribution corresponding toMm,

µm =

(
N

r

)−1 ∑
σ

δ [d(σ′ − σ), r] Mm(σ, I), m = 0, . . . , K, (68)

can be easily computed by counting the number of ways one can flipr bits in configurationσ′ to

transform aK-bit clause ofm′ type (i.e., withm′ unit bits) into a clause of them-th type

µm =

(
N

r

)−1 K∑

p,m′=0

Mm′

(
m′

p

)(
K −m′

m−m′ + p

)(
N −K

r − 2p−m + m′

)
, (69)

(here we use the convention
(

n
m

) ≡ 0 for m < 0 andm > n). In the double sum above values of

Mm′ are multiplied by the number of possible ways to flip three groups of bits:p unit bits in a

clause ofm′-type,p+m−m′ zero bits of this clause, andr−2p−m+m′ bits of the configuration

σ′ that do not belong to the clause. Similarly, one can show that the first moment corresponding to

the variableq equalsq′(1−2r/N). It is clear that dependence of the first moments on the ancestor

configurationσ′ is only via the variablesq′, M′
m for that configuration.

In the limit, r À 1, the above conditional distribution has a Gaussian form with respect to

q andMm. Elements of the covariance matrixΣm′ q′
m q (σ′) = O(r), and correspondingly, the

characteristic width of the distribution isO(r1/2). For a configurationσ′ randomly sampled in the

box(q, {Mm}) the r.m.s. deviation of the elements ofΣm′ q′
m q (σ′) from their mean values in the box

isO(N1/2). It is clear that in the limitr À N1/2 the covariance matrix elements can be replaced

by their mean values for the macroscopic state(q, {Mm}). Therefore in this limit the conditional

distribution afterr spin flips starting from some macroscopic state depends only on the values of

(q, {Mm}) in this state (universality property).

One can show that forr ¿ N1/2 the conditional distribution afterr spin flips can be expressed

via the distribution (10) withr = 1, using a standard convolution rule. However forr = 1 the
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form of the distribution is non Gaussian and we were not able to establish universality properties

in the general form. Instead we performed a series of numerical studies. In Figure 6 we present

the results of numerical simulations and the comparison with analytic results within the annealing

approximation. One can see that the theory is in very good agreement with experiment.

VII. CONCLUSION

We have formulated an ansatz of landscapes and studied the complexity of the quantum adia-

batic algorithm within the annealing approximation and found the existence of a dynamic transi-

tion and a hard(exponential) region above that dynamic transition. However, a similar analysis of

simulated annealing did not reveal any phase transitions. We explain this as follows. The anneal-

ing approximation should fail for sufficiently small energies. It is commonly known that simulated

annealing can find suboptimal solutions with very small energies very efficiently, but it takes an

exponentially long time to actually reach the ground state. The annealing approximation does not

correctly describe very small energies and cannot be used to establish its complexity. Note that

we can reconcile this with the fact that the annealing approximation becomes exact in the limit

K → ∞: if the annealing approximation fails forE . EK we expect thatEK is decreasing to

zero asK increases. However for any finiteK, the free energy computed within the annealing ap-

proximation is free from any singularities indicative of a phase transition. To study the complexity

of simulated annealing one needs to use the tools of spin glass theory, in particular, the replica

trick [15–17].

In contrast, in our analysis of the quantum adiabatic algorithm, we observed a first-order phase

transition, and, importantly, it happens for energiesE ∼ O(E∞) (whereE∞ is the expected

energy at infinite temperatureE∞ = 1
2n

∑
z Ez. Moreover, the energies on both sides of the

transition, relative toE∞ seem not to change appreciably with increasingK. Since the annealing

approximation for this range of energies can be used, the prediction for the dynamic transition

should survive, though the exact numerical values may acquire corrections. We have recomputed

the dynamic transition with simplified energy-only landscapes (see Fig. 7). For 1-in-K SAT one

can clearly see that the relative correction quickly diminishes. We believe that same happens for K-

NAE SAT if sufficiently largeK ’s are considered. If this indeed holds, it serves as a corroboration

that our results are correct numerically for largeK. The idea of using energy-only landscapes was

present in [7] as well as [21] and [22]. A jump in the time-dependence of the expected energy
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value was seen in numerical simulations [8], indicative of first-order phase transition, though a

different ensemble was considered (only instances having a unique solution were considered).
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FIG. 7: Relative difference between predictions for the dynamical phase transition point in the case of full

(γd) and energy-only (γE
d ) landscapesvsof K for 1-in-K SAT (crosses) and K-NAE SAT (pluses).

We emphasize that the annealing approximation employed in this paper essentially neglects

fluctuations due to disorder, and describes the transition as a global bifurcation between two

macroscopic states (pure states) and the complexity is due to tunnelling between them. In con-

trast, spin glass theory predicts the existence of an infinite number of pure states[15]. Secondly,

affirming our results for largeK ignores the structure of the problem, since that limit corresponds

to the so-called random energy model, where one does not expect to do better thenO(2N/2) via

any quantum algorithm. Consequently, the complexity could be determined not by the unique

minimum gap, but by a cascade of level repulsion. Numerical studies, however, support the pic-

ture with a unique minimum gap. Also, the first-order phase transition occurs for large energies.

Although it is absent for smallK, we believe that a better approach (as compared to annealing

approximation) will reveal it. Moreover, we believe that the order of the transition will remain

unchanged, suggesting that the disorder may be irrelevant for the determination of the order of the

phase transition and, consequently, for the complexity of the quantum adiabatic algorithm. That

is, the exponential complexity is not due to the true combinatorial complexity of the underlying

random optimization problem but rather due to peculiarities of the driver term and a particular

ensemble of random instances considered. In fact, for a symmetrized variant of the exact cover

problem, the same phenomenon was observed – the exponential slowdown – although the problem

did not possess any randomness [18, 19]. In fact, a ground state of that problem could be found

in O(N) time. However, it was possible to modify the driver term in the annealing Hamiltonian
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[20, 23] to circumvent the slowdown. It is quite possible that a similar change of driver term can

achieve same goals in present case, although we have not analyzed this scenario. In such a case,

one would have to go beyond the annealing approximation to study the complexity.
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APPENDIX A: ON THE NP-COMPLETENESS OF POSITIVE 1-IN-K SAT AND

POSITIVE K-NAE-SAT.

We set out to prove that both Positive1-in-K Sat andK-NAE-Sat are NP-complete. It is

straightforward to see that it takes a polynomial time to verify the assignment, so these problems

are in NP. We now prove that they are as hard as the Satisfiability problem, which is NP-complete,

by showing that any boolean formula can be represented as an instance of these.

1. Positive1-in-K Sat

A clause of type(x, . . . , x, y) necessarily impliesx = 0 andy = 1; hence we can represent

constants0 and1. A clause of type(0, . . . , 0, x, y) implies x = ¬y. Finally, a clause of type

(0, . . . , 0, x, y, z) is equivalent to a 3-clause(x, y, z) so that we can restrict ourselves toK = 3

without losing generality.

ForK = 3, immediately observe that three clauses(x, z, u′)(y, z, u′′)(u, u′, u′′) with free vari-

ablesu, u′, u′′ implies z = ¬(x ∧ y). This basic building block is in fact sufficient to build any

boolean formula, as a result, any boolean formula can be cast as an1-in-K SAT formula.
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2. PositiveK-NAE-Sat

A clause of type(x, . . . , x, y) necessarily impliesx = ¬y, and(x, . . . , x, y, z) is equivalent

to (x, y, z) so we once again restrict ourselves toK = 3. In contrast to1-in-K problem, we

shall require a non-trivial representation offalseor true. We will usepairs of variables to denote

variables of the boolean formula. Pairs00 or 11 will represent valuefalseand pairs01 or 10 will

representtrue.

The next building block,(x, y, t)(y, z, t)(z, x, t) ensures thatt = 1 if the majority of x, y, z

are0 andt = 0 if the majority are1. We shall use a shorthandf(t; x, y, z) to denote this. The

expressionf(z1; x1, y1, y2)f(z2; x2, y1, y2) then ensuresz = x ∧ y wherex, y, z are represented

as pairsx1x2, y1y2, z1z2 as indicated above. The operation of negation is trivial to represent: if

x ≡ x1x2 then¬x ≡ (¬x1)x2. These two are sufficient to construct any boolean formula.

APPENDIX B: NEXT ORDER APPROXIMATION FOR LANDSCAPES

A better approximation for the values of critical clause-to-variable rations can be obtained if

we specify the constraint that the distribution of vertex degrees be Poisson (as it is supposed to be

in a random hypergraph [24]). To be precise, we specify that

∑

σ,k

cσ,k

∏
p

δ

(∑
α

kp
α − kp

)
= c{kp} ≡

∏
p γkp

∏
p kp!

e−γK . (B1)

Consequently, with this constraint the following expression forcσ,k is obtained:

cσ,k = c{kp}
eλs

∏
p

[
kp!

∏
α(µp

α)kp
α/kp

α!
]

Z{kp}
, (B2)

where we use

Z{kp} = eλ
∏

p

(∑
α

δ(αp − 1)µp
α

)kp

+ e−λ
∏

p

(∑
α

δ(αp + 1)µp
α

)kp

. (B3)

Annealed entropy can be rewritten in the form

sann[q, {Mα}] = min
λ,µp

α

{
−λq +

∑
p,α

Mα ln
Mα

µp
α

+ ln Z[λ, µp
α]

}
−

∑
α

Mα ln Mα + γ ln γ − γK,

whereln Z is given by

ln Z =
∑

{kp}
c{kp} ln Z{kp}.
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The equations relatingq, {Mα} andλ, {µp
α} are given in (47),(48).

Similarly to Sec. V B we will use the notation (50). Sinceln Z depends only onλ andµ±,

∂ ln Z/∂µp
α depends only onσp. Therefore,Mα/µp

α = Mσp/µσp . Correspondingly,

sann[q, {Mα}] = min
λ,µ±

{
−λq + M+ ln

M+

µ+

+ M− ln
M−
µ−

+ ln Z

}
−

∑
α

Mα ln Mα +γ ln γ−γK

For convenience, we introduce new variables

µ± = µ e±h. (B4)

We then readily obtain

ln Z = γ ln µ +
∑

k

ck ln[2 cosh(λ + kh)],

(wherek =
∑

p kp andck = (γK)k

k!
e−γK) andµ drops out of the expression forsann altogether:

sann[q, {Mα}] = min
λ,h

{
−λq − (M+ −M−)h +

∑

k

ck ln[2 cosh(λ + kh)]

}
(B5)

−
∑

α

Mα ln Mα + M+ ln M+ + M− ln M− + γ ln γ − γK.

It is easy to see from this expression what the equations forλ, h are:

∑

k

ck tanh[λ + kh] = q, (B6)

∑

k

kck tanh[λ + kh] = M+ −M−.

We now turn our attention to the function`(q, {Mα}) given by (42) withθ andyα evaluated from

Eqs. (56),(58). The computation ofeyα−yα′ yields

eyα−yα′ =

(√
M+

M−

√
µ−
µ+

)σp √
Mα′

Mα

. (B7)

Multiplied by µp
α this becomes

µp
α eyα−yα′ =

√
MαMα′√
M+M−

µ. (B8)

The expression for̀(q, {Mα}) can be written in the form (cf. (59))

`(q, {Mα}) =
∑

{kp}

c{kp}
Z{kp}

′∑

σ,k

eλs+2xs
∏

p

[
kp!

∏
α

(µp
αeyα−yα′ )kp

α/kp
α!

]
,
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with the internal sum running overk consistent with a set of{kp} (B1). Substituting the quantities

defined above this becomes

`(q, {Mα}) =
∑

{kp}
c{kp}

∑
σ

∏
p

(
µ

∑
α δ(αp − σ)

√
MαMα′√
M+M−

)kp

Z{kp}
. (B9)

After some transformations we finally obtain

`(q, {Mα}) =
∑

k

ck

(∑
<α,α′>

√
MαMα′√

M+M−

)k

cosh[λ + kh]
. (B10)

whereλ, h are given by (50),(B6). Using symmetric ansatz (63) it is straightforward to calculate

from (B10) the restricted functioǹ̄(q, {Mm}) (cf. (64)). We must note however, that although

this represents a next-order improvement over annealing approximation, the relative changes inγc

andγd computed with this improved approximation are nearly imperceptible (∼ 10−4).


